Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that causes a number of infections in humans, but is best known for its association with cystic fibrosis. It is able to use a wide range of sulfur compounds as sources of sulfur for growth. Gene expression in response to changes in sulfur supply was studied in P. aeruginosa E601, a cystic fibrosis isolate that displays mucin sulfatase activity, and in P. aeruginosa PAO1. A large family of genes was found to be upregulated by sulfate limitation in both isolates, encoding sulfatases and sulfonatases, transport systems, oxidative stress proteins, and a sulfate-regulated TonB/ExbBD complex. These genes were localized in five distinct islands on the genome and encoded proteins with a significantly reduced content of cysteine and methionine. Growth of P. aeruginosa E601 with mucin as the sulfur source led not only to a sulfate starvation response but also to induction of genes involved with type III secretion systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.