Abstract

BackgroundThe fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp. The pericarp of litchi has been the focus of studies associated with fruit size, coloration, cracking and shelf life. However, research at the molecular level has been limited by the lack of genomic and transcriptomic information. In this study, an analysis of the transcriptome of litchi pericarp was performed to obtain information regarding the molecular mechanisms underlying the physiological changes in the pericarp, including those leading to fruit surface coloration.ResultsCoincident with the rapid break down of chlorophyll, but substantial increase of anthocyanins in litchi pericarp as fruit developed, two major physiological changes, degreening and pigmentation were visually apparent. In this study, a cDNA library of litchi pericarp with three different coloration stages was constructed. A total of 4.7 Gb of raw RNA-Seq data was generated and this was then de novo assembled into 51,089 unigenes with a mean length of 737 bp. Approximately 70% of the unigenes (34,705) could be annotated based on public protein databases and, of these, 3,649 genes were significantly differentially expressed between any two coloration stages, while 156 genes were differentially expressed among all three stages. Genes encoding enzymes involved in chlorophyll degradation and flavonoid biosynthesis were identified in the transcriptome dataset. The transcript expression patterns of the Stay Green (SGR) protein suggested a key role in chlorophyll degradation in the litchi pericarp, and this conclusion was supported by the result of an assay over-expressing LcSGR protein in tobacco leaves. We also found that the expression levels of most genes especially late anthocyanin biosynthesis genes were co-ordinated up-regulated coincident with the accumulation of anthocyanins, and that candidate MYB transcription factors that likely regulate flavonoid biosynthesis were identified.ConclusionsThis study provides a large collection of transcripts and expression profiles associated with litchi fruit maturation processes, including coloration. Since most of the unigenes were annotated, they provide a platform for litchi functional genomic research within this species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1433-4) contains supplementary material, which is available to authorized users.

Highlights

  • The fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp

  • An analysis of the transcriptome of litchi pericarp was performed through de novo assembly of generation sequencing data to obtain information regarding the molecular mechanisms underlying the physiological changes in the pericarp, including those leading to fruit surface coloration

  • This study provides a large collection of transcripts and expression profiles associated with litchi fruit maturation processes

Read more

Summary

Introduction

The fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp. An analysis of the transcriptome of litchi pericarp was performed to obtain information regarding the molecular mechanisms underlying the physiological changes in the pericarp, including those leading to fruit surface coloration. High concentrations of chlorophylls in the pericarp mask the red fruit surface color that is provided by anthocyanins, and slow their biosynthesis [2]. This can be ameliorated to some extent during cultivation by the practice of bagging, which is known to enhance chlorophyll degradation in the litchi pericarp and to promote fruit pigmentation. Chlorophyll degradation in many fruit species is still poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call