Abstract

BackgroundCotton Verticillium wilt is one of the most devastating diseases for cotton production in the world. Although this diseases have been widely studied at the molecular level from pathogens, the molecular basis of V. dahliae interacted with cotton has not been well examined.ResultsIn this study, RNA-seq analysis was carried out on V. dahliae samples cultured by different root exudates from three cotton cultivars (a susceptible upland cotton cultivar, a tolerant upland cotton cultivar and a resistant island cotton cultivar) and water for 0 h, 6 h, 12 h, 24 h and 48 h. Statistical analysis of differentially expressed genes revealed that V. dahliae responded to all kinds of root exudates but more strongly to susceptible cultivar than to tolerant and resistant cultivars. Go analysis indicated that ‘hydrolase activity, hydrolyzing O-glycosyl compounds’ related genes were highly enriched in V. dahliae cultured by root exudates from susceptible cotton at early stage of interaction, suggesting genes related to this term were closely related to the pathogenicity of V. dahliae. Additionally, ‘transmembrane transport’, ‘coenzyme binding’, ‘NADP binding’, ‘cofactor binding’, ‘oxidoreductase activity’, ‘flavin adenine dinucleotide binding’, ‘extracellular region’ were commonly enriched in V. dahliae cultured by all kinds of root exudates at early stage of interaction (6 h and 12 h), suggesting that genes related to these terms were required for the initial steps of the roots infections.ConclusionsBased on the GO analysis results, the early stage of interaction (6 h and 12 h) were considered as the critical stage of V. dahliae-cotton interaction. Comparative transcriptomic analysis detected that 31 candidate genes response to root exudates from cotton cultivars with different level of V. dahliae resistance, 68 response to only susceptible cotton cultivar, and 26 genes required for development of V. dahliae. Collectively, these expression data have advanced our understanding of key molecular events in the V. dahliae interacted with cotton, and provided a framework for further functional studies of candidate genes to develop better control strategies for the cotton wilt disease.

Highlights

  • Cotton Verticillium wilt is one of the most devastating diseases for cotton production in the world

  • VdPKAC1, VMK1, VdMsb, VdGARP1, VDH1, Vayg1 and VGB were found to be involved in the microsclerotia formation and pathogenic process of V. dahliae [3, 21,22,23,24,25,26]; VdSNF1 and VdSSP1 are related to cell wall degradation [27, 28]; VdNEP, VdpevD1, VdNLP1 and VdNLP2 encode effector proteins are involved in the pathogenic reaction [29,30,31,32]; VdFTF1, Vta2 and VdSge1 encode transcriptional factors regulating pathogenic genes [33,34,35]

  • We investigated the effects of root exudates from cotton cultivars susceptible, tolerant or resistant to V. dahliae on the development of the pathogen and performed a time course expression analysis of V. dahliae genes using RNA-seq to (1) compare transcriptomic profiles of V. dahliae in response to root exudates from cottons with different level of V. dahliae resistance, (2) identify biological processes in V. dahliae affected by different root exudates based on analysis of Gene Ontology (GO) terms of the differentially expressed genes, and (3) identify genes involved in the initial steps of roots infection and likely in pathogenesis of V. dahliae

Read more

Summary

Introduction

Cotton Verticillium wilt is one of the most devastating diseases for cotton production in the world This diseases have been widely studied at the molecular level from pathogens, the molecular basis of V. dahliae interacted with cotton has not been well examined. With the application of genomics, transcriptomics and proteomics, great progress has been made in understanding the molecular mechanism underlying cotton’s resistance against V. dahliae, and a number of genes related to V. dahliae resistance have been identified [11,12,13,14,15,16]. In view of the co-evolving relationship between cotton and V. dahliae, it is of vital importance to study the molecular mechanisms determining the pathogenicity of V. dahliae. Due to the complexity of the pathogenic molecular mechanism of V. dahliae, we still know little about the role of these genes in the interaction between V. dahliae and cotton

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call