Abstract

Striped Bass are economically important, migratory fishes, which occur across a wide range of latitudes. Given their wide-ranging nature, Striped Bass can cope with a broad range of environmental temperatures, yet the mechanisms underlying this ability have not been thoroughly described. Heat shock proteins (HSPs) are inducible molecular chaperones, which help mitigate protein damage resulting from increased temperatures. The importance of HSPs has been demonstrated in a number of fish species, but their role in Striped Bass is poorly understood. This study characterizes changes in gene expression in juvenile Striped Bass, following acute and chronic temperature change. Fish were acclimated to one of three temperatures (15, 25 or 30°C) and sampled at one of two treatments (control or after CTmax), following which we assessed differential gene expression and gene ontology in muscle. It is clear from our differential expression analyses that acclimation to warm temperatures elicits more robust changes to gene expression, compared to acute temperature increases. Our differential expression analyses also revealed induction of many different heat shock proteins, including hsp70, hsp90, hsp40 and other small HSPs, after both acute and chronic temperature increase in white muscle. Furthermore, the most consistent gene ontology pattern that emerged following both acclimation and CTmax was upregulation of transcripts involved in "protein folding", which also include heat shock proteins. Gene ontology analyses also suggest changes to other processes after acclimation, including decreased growth pathways and changes to DNA methylation. Overall, these data suggest that HSPs likely play a major role in the Striped Bass's ability to tolerate warm waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.