Abstract

Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.

Highlights

  • Cochlear hair cells (HCs) within the inner ear are the mechanoreceptor epithelial cells of the auditory system

  • We investigate the impact of Atoh1 and/or miR-183 family expression on the transcriptomes of two different cell models; pluripotent mouse embryonic stem cells representing a developmentally naive context and mouse multipotent otic progenitor cells as an otic fate-restricted context

  • MESC and immortalized multipotent otic progenitor (iMOP) cell transfection efficiency mouse embryonic stem cells (mESCs) were not amenable to infection with adenovirus vectors

Read more

Summary

Introduction

Cochlear hair cells (HCs) within the inner ear are the mechanoreceptor epithelial cells of the auditory system. These cells are vulnerable to damage by different factors including noise, drugs or aging. The inability of mammalian HCs to regenerate after ototoxic damaged leads to sensorineural hearing loss [1]. Hearing loss is a major health concern that affects over 5% of the world’s population, (approximately 360 million people) [2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call