Abstract

High-throughput technologies were used to identify venom gland toxin expression and to characterize the venom proteomes of two rear-fanged snakes, Ahaetulla prasina (Asian Green Vine Snake) and Borikenophis portoricensis (Puerto Rican Racer). Sixty-nine complete toxin-coding transcripts from 12 venom protein superfamilies (A. prasina) and 50 complete coding transcripts from 11 venom protein superfamilies (B. portoricensis) were identified in the venom glands. However, only 18% (A. prasina) and 32% (B. portoricensis) of the translated protein isoforms were detected in the proteome of these venoms. Both venom gland transcriptomes and venom proteomes were dominated by P-III metalloproteinases. Three-finger toxins, cysteine-rich secretory proteins, and C-type lectins were present in moderate amounts, but other protein superfamilies showed very low abundances. Venoms contained metalloproteinase activity comparable to viperid snake venom levels, but other common venom enzymes were absent or present at negligible levels. Western blot analysis showed metalloproteinase and cysteine-rich secretory protein epitopes shared with the highly venomous Boomslang (Dispholidus typus). The abundance of metalloproteinases emphasizes the important trophic role of these toxins. Comprehensive, transcriptome-informed definition of proteomes and functional characterization of venom proteins in rear-fanged snake families help to elucidate toxin evolution and provide models for protein structure-function analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call