Abstract

The 3′ poly(A) tail has important roles throughout the eukaryotic mRNA life cycle. A characteristic aspect of poly(A) tail function is furthermore that it can be modulated by changes in its length. This is in turn a well-recognised cellular means to regulate both, mRNA translation and stability, and a positive correlation has often been found between the efficiency of mRNA translation and the length of its poly(A) tail. Here we describe methodology to measure mRNA polyadenylation state in a transcriptome-wide manner, using separation of cellular mRNA populations on poly(U) sepharose in combination with microarray analysis of the resulting fractions. We further detail methods for bulk and mRNA-specific poly(A) tail length measurements to monitor the efficiency of initial mRNA separation and to verify candidates selected from the microarray data. Although detailed here for the study of yeast mRNAs, these methods are adaptable to the investigation of any cellular context in which poly(A) tail length control is known or suspected to operate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.