Abstract

Transcription elongation is a highly processive process that is punctuated by RNA polymerase (RNAP) pausing. Long-lived pauses can provide time for diverse regulatory events to occur, which play important roles in modulating gene expression. Transcription elongation factors can dramatically affect RNAP pausing in vitro. The genome-wide role of such factors in pausing in vivo has been examined only for NusG in Bacillus subtilis. NusA is another transcription elongation factor known to stimulate pausing of B. subtilis and Escherichia coli RNAP in vitro. Here, we present the first in vivo study to identify the genome-wide role of NusA in RNAP pausing. Using native elongation transcript sequencing followed by RNase digestion (RNET-seq), we analyzed factor-dependent RNAP pausing in B. subtilis and found that NusA has a relatively minor role in RNAP pausing compared to NusG. We demonstrate that NusA has both stimulating and suppressing effects on pausing in vivo. Based on our thresholding criteria on in vivo data, NusA stimulates pausing at 129 pause peaks in 93 different genes or 5' untranslated regions (5' UTRs). Putative pause hairpins were identified for 87 (67%) of the 129 NusA-stimulated pause peaks, suggesting that RNA hairpins are a common component of NusA-stimulated pause signals. However, a consensus sequence was not identified as a NusA-stimulated pause motif. We further demonstrate that NusA stimulates pausing in vitro at some of the pause sites identified in vivo. IMPORTANCE NusA is an essential transcription elongation factor that was assumed to play a major role in RNAP pausing. NusA stimulates pausing in vitro; however, the essential nature of NusA had prevented an assessment of its role in pausing in vivo. Using a NusA depletion strain and RNET-seq, we identified a similar number of NusA-stimulated and NusA-suppressed pause peaks throughout the genome. NusA-stimulated pausing was confirmed at several sites in vitro. However, NusA did not always stimulate pausing at sites identified in vivo, while in other instances NusA stimulated pausing at sites not observed in vivo. We found that NusA has only a minor role in stimulating RNAP pausing in B. subtilis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.