Abstract

BackgroundSalicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR).ResultsTranscriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress.ConclusionThe present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.

Highlights

  • Salicornia europaea is a halophyte that has a very pronounced salt tolerance

  • Sequencing and analysis of the transcriptome of S. europaea using the PacBio Iso‐Seq platform A higher quality transcriptome assembly was obtained from the mixed samples of the different organs of S. europaea, which was synthesized using the PacBio Isoform sequencing (Iso-Seq) system and yielded 16,465,671 subreads

  • The results yielded 24,414 unigenes predicted by coding sequences (CDSs) (98% of the total unigenes) and a total of 182 interspersed repeats with a total length of 10,989 bp

Read more

Summary

Introduction

Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. In response to abiotic stresses such as dehydration and excessive osmotic stress, plants resort to numerous adaptive strategies These adaptive mechanisms involve changes in physiological and biochemical processes [6]. Many genes induced by salt and drought stress are part of a larger sequence of molecular networks and likely play important roles in environmental stress responses. These genes are involved in a variety of cellular and physiological function, including signal recognition and transmission, photosynthesis and energy metabolism, membrane transport, and protein production [7,8,9,10,11]. Very few genes for salt and drought tolerance have been found so far, and most research on plant stress tolerance has focused on model plants such as Arabidopsis thaliana, Oryza sativa, as well as Nicotiana tabacum [16, 17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call