Abstract
PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposon mRNAs and some endogenous mRNAs in various animals. However, C. elegans piRNAs only trigger gene silencing at select predicted targeting sites, suggesting additional cellular mechanisms regulate piRNA silencing. To gain insight into possible mechanisms, we compared the transcriptome-wide predicted piRNA targeting sites to the in vivo piRNA binding sites. Surprisingly, while sequence-based predicted piRNA targeting sites are enriched in 3' UTRs, we found that C. elegans piRNAs preferentially bind to coding regions (CDS) of target mRNAs, leading to preferential production of secondary silencing small RNAs in the CDS. However, our analyses suggest that this CDS binding preference cannot be explained by the action of antisilencing Argonaute CSR-1. Instead, our analyses imply that CSR-1 protects mRNAs from piRNA silencing through two distinct mechanisms-by inhibiting piRNA binding across the entire CSR-1 targeted transcript, and by inhibiting secondary silencing small RNA production locally at CSR-1 bound sites. Together, our work identifies the CDS as the critical region that is uniquely competent for piRNA binding in C. elegans. We speculate the CDS binding preference may have evolved to allow the piRNA pathway to maintain robust recognition of RNA targets in spite of genetic drift. Together, our analyses revealed that distinct mechanisms are responsible for restricting piRNA binding and silencing to achieve proper transcriptome surveillance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.