Abstract

Allopolyploidy, which involves genome doubling of an interspecific hybrid is an important mechanism of abrupt speciation in flowering plants [1-6]. Recent studies show that allopolyploid formation is accompanied by extensive changes to patterns of parental gene expression ("transcriptome shock") [7-15] and that this is likely the consequence of interspecific hybridization rather than polyploidization [16]. To investigate the relative impacts of hybridization and polyploidization on transcription, we compared floral gene expression in allohexaploid Senecio cambrensis with that in its parent species, S. vulgaris (tetraploid) and S. squalidus (diploid), and their triploid F1 hybrid, S. x baxteri [17]. Major changes to parental gene expression were associated principally with S. x baxteri, suggesting that the polyploidization event responsible for the formation of S. cambrensis had a widespread calming effect on altered gene expression arising from hybridization [17]. To test this hypothesis, we analyzed floral gene expression in resynthesized lines of S. cambrensis and show that, for many genes, the "transcriptome shock" observed in S. x baxteri is calmed ("ameliorated") after genome doubling in the first generation of synthetic S. cambrensis and this altered expression pattern is maintained in subsequent generations. These findings indicate that hybridization and polyploidization have immediate yet distinct effects on large-scale patterns of gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.