Abstract

Vibrio vulnificus is a natural inhabitant of estuarine waters worldwide and is of medical relevance due to its ability to cause grievous wound infections and/or fatal septicemia. Genetic polymorphisms within the virulence-correlated gene (vcg) serve as a primary feature to distinguish clinical (C-) genotypes from environmental (E-) genotypes. C-genotypes demonstrate superior survival in human serum relative to E-genotypes, and genome comparisons have allowed for the identification of several putative virulence factors that could potentially aid C-genotypes in disease progression. We used RNA sequencing to analyze the transcriptome of C-genotypes exposed to human serum relative to seawater, which revealed two divergent genetic programs under these two conditions. In human serum, cells displayed a distinct “virulence profile” in which a number of putative virulence factors were upregulated, including genes involved in intracellular signaling, substrate binding and transport, toxin and exoenzyme production, and the heat shock response. Conversely, the “environmental profile” exhibited by cells in seawater revealed upregulation of transcription factors such as rpoS, rpoN, and iscR, as well as genes involved in intracellular signaling, chemotaxis, adherence, and biofilm formation. This dichotomous genetic switch appears to be largely governed by cyclic-di-GMP signaling, and remarkably resembles the dual life-style of V. cholerae as it transitions from host to environment. Furthermore, we found a “general stress response” module, known as the stressosome, to be upregulated in seawater. This signaling system has been well characterized in Gram-positive bacteria, however its role in V. vulnificus is not clear. We examined temporal gene expression patterns of the stressosome and found it to be upregulated in natural estuarine waters indicating that this system plays a role in sensing and responding to the environment. This study advances our understanding of gene regulation in V. vulnificus, and brings to the forefront a number of previously overlooked genetic networks.

Highlights

  • Vibrio vulnificus is a free-living inhabitant of estuarine and coastal waters worldwide, and associates with a variety of aquatic organisms [1]

  • Two blood isolates of V. vulnificus (CMCP6 and YJ016) were exposed to human serum (HS) or 10ppt artificial seawater (ASW), and cDNA prepared from mRNA isolated from each strain was subjected to Illumina sequencing

  • Comparative transcriptome analysis of V. vulnificus cells exposed to human serum relative to artificial seawater resulted in a total of 469 and 653 differentially expressed (DE) genes (p-value,0.0001) in CMCP6 and YJ016, respectively (Table 1)

Read more

Summary

Introduction

Vibrio vulnificus is a free-living inhabitant of estuarine and coastal waters worldwide, and associates with a variety of aquatic organisms [1] This bacterium is a highly invasive pathogen of both fish and humans, and is the primary cause of sea-food related deaths in the US, typically from ingestion of raw or undercooked molluscan shellfish [2]. A phylogenetic analysis of 175 genes present in all currently sequenced Vibrio species revealed the same trend, with all six V. vulnificus strains examined grouping into one clade, a distinct branching between C- and E-genotypes was observed [11]. These results indicate that the C/E differences observed are not restricted to a few loci, but are genome-wide and led to the proposition that these two genotypes represent distinct ecotypes [9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.