Abstract

As the predominant predator of pests in rice fields, spiders have been exposed to cadmium (Cd) pollution for a long time. The livability of spiders during the overwintering period is closely related to population growth in spring, but the effects of Cd on spider’s survival of cold hardness and the underlining mechanism remain unclear. In the present study, we found that some growth parameters (body length, width, mass and livability) in the wolf spider Pirata subpiraticus were altered distinctively under Cd stress. To investigate the effects of Cd toxicity on the spider at molecular levels, RNA-sequencing was performed on the spiderlings undergoing ambient temperature alterations. Transcriptome data showed that a total of 807 differentially expressed genes (DEGs) were yielded in the comparison. The obtained DEGs were mainly linked with metabolism-related process, including oxidoreductase activity and lipid transport, and 25 DEGs were associated with the reported cryoprotectants, including glycerol, arginine, cysteine, heat shock protein, glucose and mannose. Growth factors (insulin growth factor, platelet-derived growth factor and transforming growth factor) and cytochrome P450 encoding genes were dramatically expressed in the spider. Furthermore, transcriptional factors (TFs) family were characterized according to the transcriptomic profile, and ZBTB TFs were represented the most distinctive alterations in the characterized genes. Collectively, our study illustrated that Cd poses disadvantageous effects on the growth of P. subpiraticus at cold ambient temperature, and the spiders are capable of responding to the adverse Cd stress by expressing the genes involved in the metabolism of energy substances, cryoprotectants and immune-related components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call