Abstract

The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles.

Highlights

  • Dermal papilla cells (DPCs) are a population of mesenchymal cells at the base of the hair follicle (HF), and have become the focus of intense research interest because they are a key component that directly regulates HF development, growth and regeneration [1]

  • The DPCs did not lose their aggregative ability even up to the 20th passage of both primary hair follicle (PHF)-DPCs and secondary hair follicle (SHF)-DPCs, which is much longer than that of rat vibrissa DPCs [23]. This indicated that DPCs from Cashmere goats might possess a more enduring ability for HF induction [23,24]

  • We identified the genes that were differentially expressed between PHF-DPCs and SHF-DPCs at the transcript level, which will provide useful information for research on hair follicle morphogenesis

Read more

Summary

Introduction

Dermal papilla cells (DPCs) are a population of mesenchymal cells at the base of the hair follicle (HF), and have become the focus of intense research interest because they are a key component that directly regulates HF development, growth and regeneration [1]. Communication between DPCs and the overlying epithelium is essential for initiation of hair cycling at the telogen phase, production of the hair shaft during the anagen phase, induction of follicle regression at the catagen phase and differentiation of HF lineages [2]. The post-natal HF of the Cashmere goat undergoes a circannual cycling of growth (anagen phase), regression (catagen phase) and rest (telogen phase) [9,10,11]. The long growth cycle and the obviously different size of the two types of follicle allows easy differentiation of the different hair cycle phases and HF types. These characteristics make the Cashmere goat an ideal model system for studies of HF morphology and development

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.