Abstract

BackgroundThe human pathogen Corynebacterium diphtheriae is the causative agent of diphtheria. In the 1990s a large diphtheria outbreak in Eastern Europe was caused by the strain C. diphtheriae NCTC 13129. Although the genome was sequenced more than a decade ago, not much is known about its transcriptome. Our aim was to use transcriptome sequencing (RNA-Seq) to close this knowledge gap and gain insights into the transcriptional landscape of a C. diphtheriae tox+ strain.ResultsWe applied two different RNA-Seq techniques, one to retrieve 5′-ends of primary transcripts and the other to characterize the whole transcriptional landscape in order to gain insights into various features of the C. diphtheriae NCTC 13129 transcriptome. By examining the data we identified 1656 transcription start sites (TSS), of which 1202 were assigned to genes and 454 to putative novel transcripts. By using the TSS data promoter regions recognized by the housekeeping sigma factor σA and its motifs were analyzed in detail, revealing a well conserved −10 but an only weakly conserved −35 motif, respectively. Furthermore, with the TSS data 5’-UTR lengths were explored. The observed 5’-UTRs range from zero length (leaderless transcripts), which make up 20% of all genes, up to over 450 nt long leaders, which may harbor regulatory functions. The C. diphtheriae transcriptome consists of 471 operons which are further divided into 167 sub-operon structures. In a differential expression analysis approach, we discovered that genetic disruption of the iron-sensing transcription regulator DtxR, which controls expression of diphtheria toxin (DT), causes a strong influence on general gene expression. Nearly 15% of the genome is differentially transcribed, indicating that DtxR might have other regulatory functions in addition to regulation of iron metabolism and DT. Furthermore, our findings shed light on the transcriptional landscape of the DT encoding gene tox and present evidence for two tox antisense RNAs, which point to a new way of transcriptional regulation of toxin production.ConclusionsThis study presents extensive insights into the transcriptome of C. diphtheriae and provides a basis for future studies regarding gene characterization, transcriptional regulatory networks, and regulation of the tox gene in particular.

Highlights

  • The human pathogen Corynebacterium diphtheriae is the causative agent of diphtheria

  • Bacterial strains and culture conditions C. diphtheriae strains were grown in heart infusion broth (HIB) or on heart infusion agar (HIA), whereas Escherichia coli strains were grown on Luria broth (LB)

  • In-frame deletion of the C. diphtheriae dtxR gene was performed according to a published protocol [12]

Read more

Summary

Introduction

The human pathogen Corynebacterium diphtheriae is the causative agent of diphtheria. In the 1990s a large diphtheria outbreak in Eastern Europe was caused by the strain C. diphtheriae NCTC 13129. A clinical isolate from a severe diphtheria outbreak in Eastern Europe in the 1990s, named C. diphtheriae NCTC 13129, was subjected to genomic sequencing in 2003 [1]. The genome of this tox+ strain has a size of about 2.5 Mbp with a G + C content of about 53% [1]. Strain NCTC 13129 harbors three pilus gene clusters, which encode three distinct adhesive pilus types that are assembled by sortase enzymes and critical for bacterial virulence [12, 13] These pilus gene clusters and their variations are identified in many pathogenic isolates from cases of diphtheria, endocarditis and pneumonia [3]. It is important to note here that C. diphtheriae mutants devoid of pili or DT are highly attenuated in the Caenorhabditis elegans and rodent models of infection [14, 15], supporting that DT and pili are the major virulence factors in C. diphtheriae

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.