Abstract

Due to the rising usage of plastics, plastic debris are present throughout marine ecosystems and detrimentally affects marine biota. Additionally, plastics likely result in elusive toxicity effects due to addition of plasticizers. The aim of the present study was to reveal the potential effects and mechanism of microplastics (MPs), di-(2-ethylhexyl) phthalate (DEHP) and copollution of MPs and DEHP (MPs-DEHP) on Peneaus vannamei (P. vannamei) juveniles regarding oxidative stress, transcriptomics and metabolomics. MPs, DEHP and MPs-DEHP significantly induced the activities of superoxide dismutase (SOD) and catalase (CAT); MPs and DEHP have an antagonistic effect for malondialdehyde (MDA); suggesting that disorders of the antioxidant defence systems. 13, 133 and 58 differentially expressed genes and 21, 82 and 39 differentially expressed metabolites were responsible for the distinction of MPs, DEHP and MPs-DEHP groups, respectively. The combination of transcriptomic and metabolomic analyses showed that MPs, DEHP and MPs-DEHP exposure disturbed amino acid and lipid metabolism, and further induced inflammatory responses and dysfunction of purine metabolism. Furthermore, the presence of MPs might alleviate the biotoxicity of DEHP in P. vannamei. These findings provide new insights into the single and combined toxicological effects of MPs and additives for marine biota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call