Abstract
BackgroundEuryale ferox Salisb., an annual aquatic plant, is the only species in the genus Euryale in the Nymphaeaceae. Seeds of E. ferox are a nutritious food and also used in traditional Chinese medicine (Qian Shi in Mandarin). The molecular events that occurred during seed development in E. ferox have not yet been characterized. In this study, we performed transcriptomic analysis of four developmental stages (T1, T2, T3, and T4) in E. ferox seeds with three biological replicates per developmental stage to understand the physiological and biochemical processes during E. ferox seeds development.Results313,844,425 clean reads were assembled into 160,107 transcripts and 85,006 unigenes with N50 lengths of 2052 bp and 1399 bp, respectively. The unigenes were annotated using five public databases (NR, COG, Swiss-Prot, KEGG, and GO). In the KEGG database, all of the unigenes were assigned to 127 pathways, of which phenylpropanoid biosynthesis was associated with the synthesis of secondary metabolites during E. ferox seed growth and development. Phenylalanine ammonia-lyase (PAL) as the first key enzyme catalyzed the conversion of phenylalanine to trans-cinnamic acid, then was related to the synthesis of flavonoids, lignins and alkaloid. The expression of PAL1 reached its peak at T3 stage, followed by a slight decrease at T4 stage. Cytochrome P450 (P450), encoded by CYP84A1 (which also called ferulate-5-hydroxylase (F5H) in Arabidopsis), was mainly involved in the biosynthesis of lignins.ConclusionsOur study provides a transcriptomic analysis to better understand the morphological changes and the accumulation of medicinal components during E. ferox seed development. The increasing expression of PAL and P450 encoded genes in phenylpropanoid biosynthesis may promote the maturation of E. ferox seed including size, color, hardness and accumulation of medicinal components.
Highlights
Euryale ferox Salisb., an annual aquatic plant, is the only species in the genus Euryale in the Nymphaeaceae
Phenylalanine ammonia-lyase (PAL) [14] and cytochrome P450 (P450) [16] both encoded by a multi-gene family with different functions [17,18,19,20,21,22] are key enzymes in the proceed of phenylpropanoid biosynthesis
We identified 313 unigenes in the four pathways involved in lipid metabolism in E. ferox seed development
Summary
Euryale ferox Salisb., an annual aquatic plant, is the only species in the genus Euryale in the Nymphaeaceae. Euryale ferox Salisb., an annual aquatic herbaceous plant, is the only species in the genus Euryale in the botanical family Nymphaeaceae [1, 2]. Phenylpropanoid biosynthesis involved in numerous important biological processes, such as detoxification of xenobiotics and synthesis of secondary metabolites [14, 15], plays an important role in development of many plant. E. ferox seed, as an important medicinal component, was closely related to many secondary metabolites, such as flavonoids, lignins and alkaloid [14]. Phenylpropanoid biosynthesis involved in the synthesis of secondary metabolites was selected to analyse the relationship with E. ferox seed development, and PAL and P450 are the vital differential genes in this pathway that we found
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.