Abstract

Tissue sensitivity to glucocorticoids is a key factor dictating outcome of their homeostatic and therapeutic action, whereby liver represents one of the major peripheral targets. Here, we used pigs carrying a natural gain-of-function glucocorticoid receptor (GR) variant Ala610Val (GRAla610Val) as a model to identify genes and pathways related to differential glucocorticoid sensitivity. Animals with different GRAla610Val genotypes were treated either with saline or two different doses of dexamethasone. Genome-wide transcriptional responses depending on treatment, genotype, and their interaction in the liver were investigated using mRNA sequencing. Dexamethasone induced vast transcriptional responses, with more than 30% of present genes being affected. Functional annotation of genes differentially expressed due to dexamethasone treatment suggested that genes related to inflammation respond more sensitively, despite absence of an immune stimulus. In contrast, genes involved in glucose metabolism and cancer appeared to be less sensitive. Analysis of genotype and genotype × treatment interaction revealed that clustered protocadherins, particularly PCDHB7, are most prominently affected by GRAla610Val, mainly depending on dose. GRAla610Val influenced also expression of a set of glucose metabolism related genes, including PPARGC1A and CEBPB, in the absence of dexamethasone though no differences in basal plasma glucose level were observed. This might represent an adaptive response, keeping balance between receptor sensitivity, and level of circulating endogenous glucocorticoids. Administration of low dexamethasone dose changed their expression pattern and induced higher glucose response in carriers of the hypersensitive Val receptor. Our findings suggest that GRAla610Val modulates tissue responses to glucocorticoids dynamically, depending on their circulating level.

Highlights

  • Glucocorticoid receptor (GR) signaling is a subject of intense research because of its vital role in prenatal development, stress response, and as an important drug target in human and veterinary medicine, primarily due to its immune-modulatory actions (Kadmiel and Cidlowski, 2013; Wyns et al, 2013)

  • The effect of dexamethasone treatment on liver transcriptome was analyzed in three pairwise comparisons: between the D60 and C groups (D60vsC), between the D10 and C groups (D10vsC), and between the D60 and D10 treatment groups (D60vsD10), respectively

  • To obtain a comprehensive insight into biological functions and pathways influenced by dexamethasone treatment in the liver we first performed functional annotation of differentially expressed (DE) genes identified by the D60vsC comparison

Read more

Summary

Introduction

Glucocorticoid receptor (GR) signaling is a subject of intense research because of its vital role in prenatal development, stress response, and as an important drug target in human and veterinary medicine, primarily due to its immune-modulatory actions (Kadmiel and Cidlowski, 2013; Wyns et al, 2013). Genomic responses triggered by GR activation are fine-tuned at multiple, interconnected levels. These include ligand (i.e., glucocorticoid) production and bioavailabiliy, alternative processing of GR gene (NR3C1) and protein, and its interactions with coregulators and with the chromatin landscape (Sacta et al, 2016; Weikum et al, 2017). Knowledge of GR target genes and networks and better understanding of molecular mechanisms controlling its genomic actions may on one hand help to develop more targeted GC-therapies (Phuc Le et al, 2005), and provide insight into pathobiology of disorders resulting from dysregulated natural GC signaling (Kadmiel and Cidlowski, 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call