Abstract

The availability of ambient N nutrient is often correlated with the occurrences of harmful algal bloom formed by certain dinoflagellates, making it important to understand how these species might be responding to such conditions. Here, transcriptome sequencing of Karenia mikimotoi was conducted to understand the underlying molecular mechanisms by which this dinoflagellate copes with nitrogen (N) deficiency. Transcriptomic analysis revealed 8802 unigenes (3.56%) that were differentially expressed with ≥ 2-fold change. Under N-depleted conditions, genes involved in glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle as well as lipid accumulation were significantly upregulated. The elevated expression of enzymes used in protein degradation and turnover suggests possible metabolic reconfiguration towards accelerated N recycling. Moreover, a significant increase in urea transporter was observed, indicating increased assimilation of organic nitrogen resources as an alternative in N-depleted cultures of K. mikimotoi. The down-regulated glutamate synthase genes were also identified under N deficiency, suggesting suppression of primary amino acid synthesis to save N resource. Taken together, results of this study show enhanced multiple N resource acquisition and reuse of multiple N resources constitute a comprehensive strategy to cope with N deficiency in a dinoflagellate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call