Abstract

A bacterial strain designated Lysinibacillus fusiformis 15-4 was isolated from oil-free soil on the Qinghai-Tibet Plateau, which can grow well utilizing petroleum hydrocarbons as a carbon source at a lower temperature. To deeply characterize the molecular adaptations and metabolic processes of this strain when grown in a petroleum-containing environment, transcriptome analysis was performed. A total of 4664 genes and the expression of 3969 genes were observed in strain 15-4. When the strain was grown in petroleum-containing medium, 2192 genes were significantly regulated, of which 1312 (60%) were upregulated and 880 (40%) were downregulated. This strain degraded and adapted to petroleum via modulation of diverse molecular processes, including improvements in transporter activity, oxidoreductase/dehydrogenase activity, two-component system/signal transduction, transcriptional regulation, fatty acid catabolism, amino acid metabolism, and environmental stress responses. Many strain-specific genes were involved in the oxidation of hydrocarbon compounds, such as several luciferase family alkane monooxygenase genes, flavin-utilizing monooxygenase family genes, and flavoprotein-like family alkanesulfonate monooxygenase genes. Several cold shock protein genes were also induced suggesting adaptation to cold environments and the potential for petroleum degradation at low temperatures. The results obtained in this study may broaden our understanding of molecular adaptation of bacteria to hydrocarbon-containing environments and may provide valuable data for further study of L. fusiformis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.