Abstract

BackgroundRice mutant, spl5 (spotted leaf 5), has spontaneous hypersensitive-like lesions on its leaves and shows enhanced resistance to pathogens, indicating that SPL5 plays a role in programmed cell death (PCD) and disease resistance. To understand the molecular mechanism of SPL5 gene, we investigated the transcriptome profiles of the spl5 mutant leaves with few lesions (FL) and leaves with many lesions (ML) compared to the wild-type (WT) leaves respectively by microarray.ResultsThe data from microarray revealed that 243 and 896 candidate genes (Fold change ≥ 3.0) were up- or down-regulated in the spl5-FL and spl5-ML, respectively, and a large number of these genes involved in biotic defense responses or reactive oxygen species (ROS) metabolism. Interestingly, according to our microarray and real-time PCR assays, the expressions of a transcription factor OsWRKY14 and genes responsible for the biosynthesis of serotonin, anthranilate synthase (AS), indole-3-glycerolphosphate synthase (IGPS), tryptophan synthase (TS) and tryptophan decarboxylase (TDC) were significantly up-regulated in the spl5 mutant. It has been reported previously that TS and TDC expressions are regulated by OsWRKY14 in rice, which raises the possibility that OsWRKY14 regulates serotonin production through the up-regulation of TS and TDC. Our HPLC analysis further confirmed that serotonin levels were higher in the leaves of spl5 mutant than that in WT.ConclusionsSince the serotonin plays a critical role in inducing disease-resistance, the increased serotonin level may contribute, at least partly, to the disease resistance in spl5. The SPL5 gene may act as a negative regulatory factor activating the serotonin metabolic pathway, and these results might provide a new insight into the spl5-induced defense response mechanisms in plants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-015-0052-7) contains supplementary material, which is available to authorized users.

Highlights

  • Rice mutant, spl5, has spontaneous hypersensitive-like lesions on its leaves and shows enhanced resistance to pathogens, indicating that SPL5 plays a role in programmed cell death (PCD) and disease resistance

  • Transcriptome profiles in the spl5 mutant To investigate the effect of spl5 mutation on the genes expression in rice, we analyzed the transcriptome profiles in spl5-few lesions (FL) and spl5-many lesions (ML) and WT leaves

  • The results revealed that 243 (176 up-regulated; 67 down-regulated) and 896 (445 upregulated; 451 down-regulated) genes were differentially expressed in the spl5-FL and spl5-ML compared to the WT, respectively (FC ≥ 3.0; Table 1; Additional file 1: Table S1; Additional file 2: Table S2)

Read more

Summary

Introduction

Spl (spotted leaf 5), has spontaneous hypersensitive-like lesions on its leaves and shows enhanced resistance to pathogens, indicating that SPL5 plays a role in programmed cell death (PCD) and disease resistance. SPL7 is a heat stress transcription factor (Yamanouchi et al 2002); SPL11 is an E3 ubiquitin ligase (Zeng et al 2004); SPL28 is a clathrin-associated adaptor protein complex 1 medium subunit 1 (AP1M1), which is important in the post-Golgi trafficking pathway (Qiao et al 2010). These findings indicate that numerous proteins, with distinct functions in multiple signaling pathways, are involved in the regulation of HR cell death and disease resistance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.