Abstract

X-linked agammaglobulinemia (XLA) is a rare genetic disorder, caused by mutations in BTK (Bruton’s Tyrosine Kinase) gene. Deep high-throughput RNA sequencing (RNA-Seq) approach was utilized to explore the possible differences in transcriptome profiles of primary monocytes in XLA patients compared with healthy subjects. Our analysis revealed the differences in expression of 1,827 protein-coding genes, 95 annotated long non-coding RNAs (lncRNAs) and 20 novel lincRNAs between XLA patients and healthy subjects. GO and KEGG pathway analysis of differentially expressed (DE) protein-coding genes showed downregulation of several innate immune-related genes and upregulation of oxidative phosphorylation and apoptosis-related genes in XLA patients compared to the healthy subjects. Moreover, the functional prediction analysis of DE lncRNAs revealed their potential role in regulating the monocytes cell cycle and apoptosis in XLA patients. Our results suggested that BTK mutations may contribute to the dysregulation of innate immune system and increase susceptibility to apoptosis in monocytes of XLA patients. This study provides significant finding on the regulation of BTK gene in monocytes and the potential for development of innovative biomarkers and therapeutic monitoring strategies to increase the quality of life in XLA patients.

Highlights

  • X-linked agammaglobulinemia (XLA) is one of the inherited forms of Primary Immunodeficiency Diseases (PIDs)[1]

  • To explore the dysregulated gene interactions in primary monocytes of XLA patients, the interaction networks were generated for differentially expressed (DE) protein-coding genes which were significantly enriched in upregulated and downregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in XLA patients compared to healthy subjects (Fig. 3)

  • We investigated the effect of BTK gene expression deficiency on primary monocyte’s immune function in XLA patients using deep RNA sequencing (RNA-Seq) analysis

Read more

Summary

Introduction

X-linked agammaglobulinemia (XLA) is one of the inherited forms of Primary Immunodeficiency Diseases (PIDs)[1]. We identified the set of protein-coding genes and lncRNAs which were differentially expressed (DE) between XLA patients and healthy subjects. Expressed (DE) protein-coding genes and lncRNAs in XLA patients compared to healthy subjects.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call