Abstract

Injury of the CA1 subregion induced by a single injection of kainic acid (1×KA) in juvenile animals (P20) is attenuated in animals with two prior sustained neonatal seizures on P6 and P9. To identify gene candidates involved in the spatially protective effects produced by early-life conditioning seizures we profiled and compared the transcriptomes of CA1 subregions from control, 1×KA- and 3×KA-treated animals. More genes were regulated following 3×KA (9.6%) than after 1×KA (7.1%). Following 1×KA, genes supporting oxidative stress, growth, development, inflammation and neurotransmission were upregulated (e.g. Cacng1, Nadsyn1, Kcng1, Aven, S100a4, GFAP, Vim, Hrsp12 and Grik1). After 3×KA, protective genes were differentially over-expressed [e.g. Cat, Gpx7, Gad1, Hspa12A, Foxn1, adenosine A1 receptor, Ca(2+) adaptor and homeostasis proteins, Cacnb4, Atp2b2, anti-apoptotic Bcl-2 gene members, intracellular trafficking protein, Grasp and suppressor of cytokine signaling (Socs3)]. Distinct anti-inflammatory interleukins (ILs) not observed in adult tissues [e.g. IL-6 transducer, IL-23 and IL-33 or their receptors (IL-F2)] were also over-expressed. Several transcripts were validated by real-time polymerase chain reaction (QPCR) and immunohistochemistry. QPCR showed that casp 6 was increased after 1×KA but reduced after 3×KA; the pro-inflammatory gene Cox1 was either upregulated or unchanged after 1×KA but reduced by ~70% after 3×KA. Enhanced GFAP immunostaining following 1×KA was selectively attenuated in the CA1 subregion after 3×KA. The observed differential transcriptional responses may contribute to early-life seizure-induced pre-conditioning and neuroprotection by reducing glutamate receptor-mediated Ca(2+) permeability of the hippocampus and redirecting inflammatory and apoptotic pathways. These changes could lead to new genetic therapies for epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call