Abstract

BackgroundThe major function of the ovary is to produce oocytes for fertilisation. Oocytes mature in follicles surrounded by nurturing granulosa cells and all are enclosed by a basal lamina. During growth, granulosa cells replicate and a large fluid-filled cavity (the antrum) develops in the centre. Only follicles that have enlarged to over 10 mm can ovulate in cows. In mammals, the number of primordial follicles far exceeds the numbers that ever ovulate and atresia or regression of follicles is a mechanism to regulate the number of oocytes ovulated and to contribute to the timing of ovulation. To better understand the molecular basis of follicular atresia, we undertook transcriptome profiling of granulosa cells from healthy (n = 10) and atretic (n = 5) bovine follicles at early antral stages (< 5 mm).ResultsPrincipal Component Analysis (PCA) and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. These analyses and size-frequency plots of coefficients of variation of signal intensities revealed that the healthy follicles were more heterogeneous. Examining the differentially-expressed genes the most significantly affected functions in atretic follicles were cell death, organ development, tissue development and embryonic development. The overall processes influenced by transcription factor gene TP53 were predicted to be activated, whereas those of MYC were inhibited on the basis of known interactions with the genes in our dataset. The top ranked canonical pathway contained signalling molecules common to various inflammatory/fibrotic pathways such as the transforming growth factor-β and tumour necrosis factor-α pathways. The two most significant networks also reflect this pattern of tissue remodelling/fibrosis gene expression. These networks also contain molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor-β signalling and were up regulated.ConclusionsSmall healthy antral follicles, which have a number of growth outcomes, exhibit greater variability in gene expression, particularly in genes associated with cell division and other growth-related functions. Atresia, on the other hand, not only involves cell death but clearly is an active process similar to wound healing.

Highlights

  • The major function of the ovary is to produce oocytes for fertilisation

  • In this study we have identified major differences in gene expression pathways and networks that develop in granulosa cells of small antral follicles during the process of atresia

  • Granulosa cells from small healthy (3.1 ± SEM 0.2 mm diameter; n = 10) and atretic (4.2 ± 0.5 mm; n = 5) follicles were selected for the microarray gene expression analysis

Read more

Summary

Introduction

The major function of the ovary is to produce oocytes for fertilisation. Oocytes mature in follicles surrounded by nurturing granulosa cells and all are enclosed by a basal lamina. The number of primordial follicles far exceeds the numbers that ever ovulate and atresia or regression of follicles is a mechanism to regulate the number of oocytes ovulated and to contribute to the timing of ovulation. The oocyte is Hormone (LH) from the anterior pituitary gland which results in ovulation of the oocyte, the remaining granulosa cells of the follicle wall transform into luteal cells of the corpus luteum and produce progesterone [4]. Both the numbers and maturation of granulosa cells in any given follicle are important and both processes are regulated by gonadotrophic hormones from the anterior pituitary. Atresia in any species can regulate the number of oocytes ovulated and contribute to the timing of ovulation in a reproductive cycle

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.