Abstract

Intramuscular fat (IMF) is a key index to measure the tenderness and flavor of pork. Wannanhua pig, a famous indigenous pig breed in Anhui Province, is renowned for its high lipid deposition and high genetic divergence, making it an ideal model for investigating the lipid position trait mechanisms in pigs. However, the regulatory mechanisms of lipid deposition and development in pigs remain unclear. Furthermore, the temporal differences in gene regulation are based on muscle growth and IMF deposition. The purpose of this study was to study the expression changes of longissimus dorsi (LD) at different growth stages of WH pigs at the molecular level, to screen the candidate genes and signaling pathways related to IMF during development by transcriptome sequencing technology, and to explore the transcriptional regulation mechanism of IMF deposition-related genes at different development stages. In total, 616, 485, and 1487 genes were differentially expressed between LD60 and LD120, LD120 and LD240, and LD60 and LD240, respectively. Numerous differentially expressed genes (DEGs) associated with lipid metabolism and muscle development were identified, and most of them were involved in IMF deposition and were significantly up-regulated in LD120 and LD240 compared to LD60. STEM (Short Time-series Expression Miner) analysis indicated significant variations in the mRNA expression across distinct muscle development stages. The differential expression of 12 selected DEGs was confirmed by RT-qPCR. The results of this study contribute to our understanding of the molecular mechanism of IMF deposition and provide a new way to accelerate the genetic improvement of pork quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.