Abstract

Earlier diagnosis of lung cancer is crucial for reducing mortality and morbidity in high-risk patients. Liquid biopsy is a critical technique for detecting the cancer earlier and tracking the treatment outcomes. However, noninvasive biomarkers are desperately needed due to the lack of therapeutic sensitivity and early-stage diagnosis. Therefore, we have utilized transcriptomic profiling of early-stage lung cancer patients to discover promising biomarkers and their associated metabolic functions. Initially, PCA highlights the diversity level of gene expression in three stages of lung cancer samples. We have identified two major clusters consisting of highly variant genes among the three stages. Further, a total of 7742, 6611, and 643 genes were identified as DGE for stages I-IIIrespectively. Topological analysis of the protein-protein interaction network resulted in seven candidate biomarkers such as JUN, LYN, PTK2, UBC, HSP90AA1, TP53, and UBB cumulatively for the three stages of lung cancers. Gene enrichment and KEGG pathway analyses aid in the comprehension of pathway mechanisms and regulation of identified hub genes in lung cancer. Importantly, the medial survival rates up to ~ 70months were identified for hub genes during the Kaplan-Meier survival analysis. Moreover, the hub genes displayed the significance of risk factors during gene expression analysis using TIMER2.0 analysis. Therefore, we have reason that these biomarkers may serve as a prospective targeting candidate with higher treatment efficacy in early-stage lung cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.