Abstract

Goldfish (Carassius auratus) have been employed as a model organism to investigate the innate immune system and host-pathogen interactions. A Gram-negative bacterium called Aeromonas hydrophila has been found to cause mass mortality due to infection in a wide variety of fish species in the aquatic system. In this study, damages in Bowman's capsule, inflammatory tubular (proximal and distilled convoluted) structure, and glomerular necrosis were observed in A. hydrophila-infected head kidney of goldfish. To increase the better understanding of immune mechanisms of host defense against A. hydrophila, we performed a transcriptome analysis in head kidney of goldfish at 3 and 7 days of post-infection (dpi). Comparing to the control group, 4638 and 2580 differentially expressed genes (DEGs) were observed at 3 and 7 dpi, respectively. The DEGs were subsequently enriched in multiple immune-related pathways including Protein processing in endoplasmic reticulum, Insulin signaling pathway, and NOD-like receptor signaling pathway. The expression profile of immune-related genes such as TRAIL, CCL19, VDJ recombination-activating protein 1-like, Rag-1, and STING was validated by qRT-PCR. Furthermore, the levels of immune-related enzyme (LZM, AKP, SOD, and CAT) activities were examined at 3 and 7 dpi. The knowledge gained from the current study will be helpful for better understanding of early immune response in goldfish after A. hydrophila challenge, which will aid in future research on prevention strategies in teleost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.