Abstract

Nervous necrosis virus (NNV) infection has been considered a serious disease in farmed grouper. Particularly, the persistent infection model conducts the grouper into a carrier state that continues to spread the virus through spawning. This particular model makes disease control more difficult in the aquaculture industry. In the present study, we used RNA-Seq, a high-throughput method based on next-generation sequencing, to profile the expression of genes during the period of NNV persistent infection. We evaluated the transcriptomic changes in the brain tissue of grouper. The inactivated-NNV vaccine was used as a comparison group. Based on the differentially expressed genes, highly immune cell active signaling and surface receptor expression were triggered during persistent infection. The interferon-induced response was also highly expressed in the infected brain tissue. However, critical negative regulatory factors of T-cells, such as PD-L1 and LAG3, were up-regulated. The present transcriptome study revealed a comprehensive view of the state of NNV persistent infection and provided insights into the state of impaired NNV clearance in the grouper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call