Abstract
The transcriptome profiles for wild-type (plasmid-free) and recombinant (plasmid-bearing) Escherichia coli during well-controlled synchronized high-cell-density fed-batch cultures were analyzed by DNA microarrays. It was observed that the growth phase significantly affected the transcriptome profiles, and the transcriptome profiles were significantly different for the recombinant and wild-type cultures. The response of the wild-type and recombinant cultures to an isopropyl-1-thio-beta-D-galactopyranoside- (IPTG-) addition was examined, where IPTG induced recombinant protein production in the plasmid-bearing cultures. The IPTG-addition significantly altered the transcriptome response of the wild-type cultures entering the stationary phase. The IPTG-induced recombinant protein production resulted in a significant down-regulation of many energy synthesis genes (atp, nuo, cyo), as well as nearly all transcription- and translation-related genes (rpo, rpl, rpm, rps, rrf, rrl, rrs). Numerous phage (psp, hfl) and transposon-related genes (tra, ins) were significantly regulated in the recombinant cultures due to the IPTG-induction. These results indicate that the signaling mechanism, associated with the recombinant protein production, may induce a metabolic burden in the form of a phage defense mechanism. Taken together, these results indicated that recombinant protein production initiated a cascade of transcriptome responses that down-regulated the very genes needed to sustain productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.