Abstract
Crop plants undergo morpho-physiological changes throughout the growth process in response to both the internal and the external environment, and that eventually determine the yield. The system-level adjustment of the morpho-physiological changes has remained largely unclear, however, especially in field conditions. Here, we reveal changes in nutrient status associated with tiller development and soil conditions based on the leaf transcriptome profile of rice (Oryza sativa) throughout the entire period of growth. We performed gene co-expression network analysis and identified three gene sets as indicators for monitoring the internal nitrogen and phosphorus status. Expression profiling reveals that the phosphorus starvation response is expressed during the tillering stage and is then switched off with the transition to nitrogen deficiency. Coincident with phosphorus status dynamics, the level of phosphate in the leaf is demonstrated to be low during the tillering stage and subsequently increases drastically. The phosphorus dynamics are genetically validated by analysing mutants with a defect in phosphorus homeostasis. Notably, we show that nitrogen limitation directly suppresses the phosphorus starvation response. Finally, the phosphorus starvation response is demonstrated to be activated in soil with a high phosphate retention capacity, without the visible phenotypes associated with phosphorus starvation. Our results reveal a growth stage- and soil condition-dependent reaction that requires phosphorus, which is expressed to promote the phosphorus uptake required for developing tillers and is directly adjusted by nitrogen status. A molecular framework for elucidating nutrient status dynamics under field conditions would provide insights into improving crop productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.