Abstract

Parthenocarpy is an important trait determining yield and quality of fruit crops. However, the understanding of the mechanisms underlying parthenocarpy induction is limited. Cucumber (Cucumis sativus L.) is abundant in parthenocarpic germplasm resources and is an excellent model organism for parthenocarpy studies. In this study, the transcriptome of cucumber fruits was studied using RNA sequencing (RNA-Seq). Differentially expressed genes (DEGs) of set fruits were compared against aborted fruits. Distinctive features of parthenocarpic and pollinated fruits were revealed by combining the analysis of the transcriptome together with cytomorphological and physiological analysis. Cell division and the transcription of cell division genes were found to be more active in parthenocarpic fruit. The study also indicated that parthenocarpic fruit set is a high sugar-consuming process which is achieved via enhanced carbohydrate degradation through transcription of genes that lead to the breakdown of carbohydrates. Furthermore, the evidence provided by this work supports a hypothesis that parthenocarpic fruit set is induced by mimicking the processes of pollination/fertilization at the transcriptional level, i.e. by performing the same transcriptional patterns of genes inducing pollination and gametophyte development as in pollinated fruit. Based on the RNA-Seq and ovary transient expression results, 14 genes were predicted as putative parthenocarpic genes. The transcription analysis of these candidate genes revealed auxin, cytokinin and gibberellin cross-talk at the transcriptional level during parthenocarpic fruit set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call