Abstract

BackgroundFusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Chinese wheat landrace Wangshuibai is one of the most important resistance sources in the world. The knowledge of mechanism underlying its resistance to FHB is still limited.ResultsTo get an overview of transcriptome characteristics of Wangshuibai during infection by Fg, a high-throughput RNA sequencing based on next generation sequencing (NGS) technology (Illumina) were performed. Totally, 165,499 unigenes were generated and assigned to known protein databases including NCBI non-redundant protein database (nr) (82,721, 50.0%), Gene Ontology (GO) (38,184, 23.1%), Swiss-Prot (50,702, 30.6%), Clusters of orthologous groups (COG) (51,566, 31.2%) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (30,657, 18.5%), as determined by Blastx search. With another NGS based platform, a digital gene expression (DGE) system, gene expression in Wangshuibai and its FHB susceptible mutant NAUH117 was profiled and compared at two infection stages by inoculation of Fg at 24 and 48 hour, with the aim of identifying genes involved in FHB resistance.ConclusionPathogen-related proteins such as PR5, PR14 and ABC transporter and JA signaling pathway were crucial for FHB resistance, especially that mediated by Fhb1. ET pathway and ROS/NO pathway were not activated in Wangshuibai and may be not pivotal in defense to FHB. Consistent with the fact that in NAUH117 there presented a chromosome fragment deletion, which led to its increased FHB susceptibility, in Wangshuibai, twenty out of eighty-nine genes showed changed expression patterns upon the infection of Fg. The up-regulation of eight of them was confirmed by qRT-PCR, revealing they may be candidate genes for Fhb1 and need further functional analysis to confirm their roles in FHB resistance.

Highlights

  • Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe, brings serious damage to wheat production

  • Differences of the molecular events in response to Fg infection in Wangshuibai and NAUH117 Previous studies have identified genes and pathways involved in or related to FHB resistance. We examined how these genes expressed in spikes of Wangshuibai and NAUH117 after infection of Fg toward the identification of genes or pathways critical for FHB resistance in Wangshuibai, especially that mediated by Fhb1

  • Wangshuibai resists the spread of Fg in the infected spikelets mainly through the activation of the jasmonic acid (JA) defense pathway, which was regulated by Fhb1

Read more

Summary

Introduction

Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Fusarium head blight (FHB) caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble) reduces grain yield and quality, but is a major safety concern when human and animal consume Fusarium-contaminated wheat products [1]. Defense-related genes were transformed to susceptible or moderate susceptible wheat varieties in the aim of obtaining transgenic plants with enhanced FHB resistance. These genes included beta-1, 3-glucanase (PR2), chitinase (PR3), wheatwins (PR4), thaumatin-like protein (PR5), α-1-purothionin and so on [6,7,8,9,10,11]. The obtained transgenic wheat lines only showed relatively low level of improvement of FHB resistance

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.