Abstract

BackgroundThe box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. In this study, a combined transcriptomic and proteomic approach was used to identify C. fleckeri proteins that elicit toxic effects in envenoming.ResultsMore than 40,000,000 Illumina reads were used to de novo assemble ∼ 34,000 contiguous cDNA sequences and ∼ 20,000 proteins were predicted based on homology searches, protein motifs, gene ontology and biological pathway mapping. More than 170 potential toxin proteins were identified from the transcriptome on the basis of homology to known toxins in publicly available sequence databases. MS/MS analysis of C. fleckeri venom identified over 250 proteins, including a subset of the toxins predicted from analysis of the transcriptome. Potential toxins identified using MS/MS included metalloproteinases, an alpha-macroglobulin domain containing protein, two CRISP proteins and a turripeptide-like protease inhibitor. Nine novel examples of a taxonomically restricted family of potent cnidarian pore-forming toxins were also identified. Members of this toxin family are potently haemolytic and cause pain, inflammation, dermonecrosis, cardiovascular collapse and death in experimental animals, suggesting that these toxins are responsible for many of the symptoms of C. fleckeri envenomation.ConclusionsThis study provides the first overview of a box jellyfish transcriptome which, coupled with venom proteomics data, enhances our current understanding of box jellyfish venom composition and the molecular structure and function of cnidarian toxins. The generated data represent a useful resource to guide future comparative studies, novel protein/peptide discovery and the development of more effective treatments for jellyfish stings in humans. (Length: 300).Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1568-3) contains supplementary material, which is available to authorized users.

Highlights

  • The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans

  • Symptoms of C. fleckeri envenoming can include the rapid onset of severe cutaneous pain and inflammation, dermonecrosis, dyspnoea, transient hypertension, hypotension, cardiovascular collapse and cardiac arrest

  • A comparison of bit scores obtained from searches against protein databases from the model cnidarian organisms H. magnipapillata and N. vectensis suggested that, in general, C. fleckeri protein products were more similar to the former than the latter (Additional file 1: Figure S1)

Read more

Summary

Introduction

The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. Box jellyfish (Class Cubozoa) produce venoms that are designed to swiftly incapacitate prey and deter predators, but they cause adverse effects in envenomed humans. Chironex fleckeri is the largest and most venomous box jellyfish species. It inhabits the tropical coastal waters of Australia and is renowned for its ability to inflict extremely painful and potentially life threatening stings to humans. Over five decades of research on whole or fractionated C. fleckeri tentacle extracts and nematocystderived venom has established that C. fleckeri toxins elicit

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call