Abstract

BackgroundLiver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body’s most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs in vitro, or species differences. We therefore characterized and quantitatively compared expressed gene products of freshly isolated, highly pure LSECs (fenestrated SE-1/FcγRIIb2+) and KCs (CD11b/c+) from Sprague Dawley, Crl:CD (SD), male rats using high throughput mRNA-sequencing and label-free proteomics.ResultsWe observed a robust correlation between the proteomes and transcriptomes of the two cell types. Integrative analysis of the global molecular profile demonstrated the immunological aspects of LSECs. The constitutive expression of several immune genes and corresponding proteins of LSECs bore some resemblance with the expression in macrophages. LSECs and KCs both expressed high levels of scavenger receptors (SR) and C-type lectins. Equivalent expression of SR-A1 (Msr1), mannose receptor (Mrc1), SR-B1 (Scarb1), and SR-B3 (Scarb2) suggested functional similarity between the two cell types, while functional distinction between the cells was evidenced by LSEC-specific expression of the SRs stabilin-1 (Stab1) and stabilin-2 (Stab2), and the C-type lectins LSECtin (Clec4g) and DC-SIGNR (Clec4m). Many immune regulatory factors were differentially expressed in LSECs and KCs, with one cell predominantly expressing a specific cytokine/chemokine and the other cell the cognate receptor, illustrating the complex cytokine milieu of the sinusoids. Both cells expressed genes and proteins involved in antigen processing and presentation, and lymphocyte co-stimulation.ConclusionsOur findings support complementary and partly overlapping scavenging and immune functions of LSECs and KCs. This highlights the importance of including LSECs in studies of liver immunity, and liver clearance and toxicity of large molecule drugs and nano-formulations.

Highlights

  • Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body’s most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics

  • Cell isolates were analyzed by scanning electron microscopy (EM) (LSECs: n = 6, including all cell isolates for proteomics and RNA sequencing; KCs: n = 4, including all isolates for proteomics), and immune cytochemistry (KC: n = 4, LSEC: n = 3, including all cell isolates for proteomics)

  • Expression values are given as RPKM (RNA-seq), and iBAQ, as described in Methods by magnetic-activated cell separation (MACS) of nonparenchymal liver cell (NPC) suspensions generated from collagenase perfused rat liver, plated for 0.5 h (KCs) or 1 h (LSECs) and washed with medium before RNA and protein extraction (Fig. 1a)

Read more

Summary

Introduction

Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body’s most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. For decades KCs, facing the sinusoidal lumen, were believed to be the only liver cell responsible for the clearance of blood-borne material [4, 5] This view was challenged by a series of studies throughout the 1980s and 1990s showing that a number of physiological macromolecules and colloids were cleared by LSECs, but only to a minor extent by KCs [6,7,8,9,10,11,12,13,14,15]. Today it is accepted that LSECs and KCs together make up the hepatic “dual cell principle of waste clearance”, with LSECs being geared to effective clathrin-mediated endocytosis of nanoparticles (< 200 nm), colloids, and macromolecules, and KCs taking up larger material [5] The discovery that these cells share the task of blood clearance in this way suggested that LSECs are a highly specialized endothelium with characteristics in common with KCs, functionally, but at the molecular level as well. The present study was undertaken to study the similarities and differences of the two cells, by comparing their transcriptomes and proteomes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call