Abstract

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is associated with psychological stress. However, the full landscape of IBS-related epigenetic factors remains unveiled and needs to be elucidated. The water-avoidance stress (WAS) method was used to induce a rat IBS model. Each rat was monitored, and its defecation and behavior were recorded. Total colon RNA was isolated and subjected to Affymetrix GeneChip analysis. Reduced Representation Bisulfate Sequencing (RRBS) was applied to determine the genome-wide methylation pattern in both IBS and control rats. Rats with IBS egested a significantly increased amount of dry and loose stools compared with the control animals, without significant changes in body weight. Compared with the control group, 309 genes were upregulated and 224 genes were downregulated in the colon of the IBS rats. Notch signaling and focal adhesion were increased in the differentially expressed genes (DEGs). A total of 541 genes had significant lower methylation level and 626 genes had significantly higher methylation level in their promoter regions. Adherens junction and leukocyte transendothelial migration were enriched in the differentially methylated genes (DMGs). Few genes were identified in common in both DEGs and DMGs, suggesting that gene expression was not altered by promoter methylation. Reverse transcription-quantitative polymerase chain reaction validation revealed that the mRNA levels of SSX2IP, PARD3 and VCL were significantly downregulated in the IBS group, in accordance with hypermethylation of their promoters. In summary, the present study used a WAS-induced IBS rat model to provide transcriptome and methylome profiling. Most DEGs were associated with Notch signaling and focal adhesion, and only a few were altered by promoter methylation. The present results demonstrated that psychological stress could influence the integrity of the intestinal mucosa barrier and regulate inflammatory response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.