Abstract

Release of bud dormancy in perennial woody plants is a temperature-dependent process and thus flowering in these species is heavily affected by climate change. The lack of cold winters in temperate growing regions often results in reduced flowering and low fruit yields. This is likely to decrease the availability of fruits and nuts of the Prunus spp. in the near future. In order to maintain high yields, it is crucial to gain detailed knowledge on the molecular mechanisms controlling the release of bud dormancy. Here, we studied these mechanisms using sweet cherry (Prunus avium L.), a crop where the agrochemical hydrogen cyanamide (HC) is routinely used to compensate for the lack of cold winter temperatures and to induce flower opening. In this work, dormant flower buds were sprayed with hydrogen cyanamide followed by deep RNA sequencing, identifying three main expression patterns in response to HC. These transcript level results were validated by quantitative real time polymerase chain reaction and supported further by phytohormone profiling (ABA, SA, IAA, CK, ethylene, JA). Using these approaches, we identified the most up-regulated pathways: the cytokinin pathway, as well as the jasmonate and the hydrogen cyanide pathway. Our results strongly suggest an inductive effect of these metabolites in bud dormancy release and provide a stepping stone for the characterization of key genes in bud dormancy release.

Highlights

  • Important crops like grapevine (Vitis vinifera L.), apple (Malus domestica Borkh.), and sweet cherry (Prunus avium L.), are negatively affected by global warming, because increasingly warmer winters prevent the breaking of the buds in the following spring (Campoy et al, 2011; Luedeling, 2012; Sanchez-Perez et al, 2014)

  • To achieve controlled endodormancy release, dormant sweet cherry flower buds were treated with hydrogen cyanamide and the percentage of bud break was determined up to 18 dat (Figure 1)

  • To the best of our knowledge, this is the first time that the effect of hydrogen cyanamide on sweet cherry bud break has been recorded in controlled conditions

Read more

Summary

Introduction

Important crops like grapevine (Vitis vinifera L.), apple (Malus domestica Borkh.), and sweet cherry (Prunus avium L.), are negatively affected by global warming, because increasingly warmer winters prevent the breaking of the buds in the following spring (Campoy et al, 2011; Luedeling, 2012; Sanchez-Perez et al, 2014). The advantage of hydrogen cyanamide treatment is the possibility of controlled dormancy release in comparison with controls. This allows a much more precise determination of the time point of endodormancy release and a more time-sensitive analysis of the affected pathways

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call