Abstract

Latilactobacillus (L.) sakei is a species of lactic acid bacteria (LAB) mostly studied according to its application in food fermentation. Previously, L. sakei L3 was isolated by our laboratory and possessed the capability of high exopolysaccharide (EPS) yield during sucrose-added fermentation. However, the understanding of sucrose promoting EPS production is still limited. Here, we analyzed the growth characteristics of L. sakei L3 and alterations of its transcriptional profiles during sucrose-added fermentation. The results showed that L. sakei L3 could survive between pH 4.0 and pH 9.0, tolerant to NaCl (<10%, w/v) and urea (<6%, w/v). Meanwhile, transcriptomic analysis showed that a total of 426 differentially expressed genes and eight non-coding RNAs were identified. Genes associated with sucrose metabolism were significantly induced, so L. sakei L3 increased the utilization of sucrose to produce EPS, while genes related to uridine monophosphate (UMP), fatty acids and folate synthetic pathways were significantly inhibited, indicating that L. sakei L3 decreased self-growth, substance and energy metabolism to satisfy EPS production. Overall, transcriptome analysis provided valuable insights into the mechanisms by which L. sakei L3 utilizes sucrose for EPS biosynthesis. The study provided a theoretical foundation for the further application of functional EPS in the food industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.