Abstract

Plants can bind excessive heavy metals by synthesizing compounds to alleviate the harm caused by heavy metals. To reveal the mechanism by which Dendrobium nobile alleviates zinc stress, metabolome combined transcriptome analysis was used in this research. The results showed that zinc was mainly enriched in the roots and leaves and the biomass of the roots and leaves of D. nobile decreased significantly by 18.21 % and 49.22 % (P < 0.05) compared to the control (CK), respectively. Meanwhile, the contents of nonprotein thiol(NPT), glutathione(GSH), and phytochelatins (PCs) in the roots were significantly increased by 48.8 %, 78.3 %, and 45.4 % compared to CK, respectively. Through TEM testing, it was found that D. nobile exhibited toxic symptoms. Metabolome analysis showed that the metabolites of D. nobile under zinc stress were mainly enriched in biosynthesis of other secondary metabolites and carbohydrate metabolism. Nova-seq results identified 1202 differentially expressed genes(DEGs), of which 603 were upregulated and 599 were downregulated. Through GO and KEGG annotation analysis of these DEGs, it was found that PMR6 and PECS-2.1, SS1 and GLU3 genes were significantly upregulated, leading to an increase in the biosynthesis of xylan, pectin, starch and other polysaccharides in D. nobile. These polysaccharides can form a “Polysaccharide-Zn” with excess zinc. Meanwhile, the GSTs in glutathione metabolism were significantly upregulated, leading to a significant increase in the content of NPT, GSH, and PCs. These zinc complexes were transported to vacuoles through ABC transporters for compartmentalization, effectively alleviating the damage of zinc. The results can provide new insights for phytoremediation and quality assurance of medicinal D. nobile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.