Abstract

BackgroundGinger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR).ResultsA total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the “terpenoid backbone biosynthesis” and “stilbenoid, diarylheptanoid and gingerol biosynthesis” pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log2 (fold-change) ≥ 1) in FR than in YG or MG.ConclusionThis study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to rhizomes, where they accumulate.

Highlights

  • Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods

  • The total mapped reads for matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR) were 77.44, 75.15, and 73.83%, respectively

  • A total of 250,969, 240,132, and 225,366 unigenes were identified for the MG, YG, and FR libraries, respectively (Table 1)

Read more

Summary

Introduction

Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. Chemical component analysis has been used to identify hundreds of compounds in ginger These compounds can generally be classified into three categories: volatile oils, gingerols, and diarylheptanoids (Afzal et al 2001; Ding and Ding 1988; Jiang et al 2006). Diarylheptanoids is a class of derivatives that have a 1,7-diarylheptane skeleton, including curcuminoids, which are compounds found in turmeric (Jiang et al 2007) In addition to these compounds, ginger contains a large amount of flavonoids, which are natural antioxidants that can lower the risk of cancer, high blood pressure, and heart disease (Ghasemzadeh et al 2010a, b; Knekt et al 2002)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call