Abstract

Bivalves have evolved effective strategies to combat different pathogens in the environment. They rely on innate immunity to deal with the invasion of various bacteria, viruses, and other microorganisms. However, the molecular mechanisms underlying the responses remain largely unknown. Herein, we constructed 21 transcriptomes of the hemocytes after lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (poly(I:C)) stimulation to investigate the molecular mechanisms underlying adaptations and plastic responses to different pathogen-related molecular patterns (PAMPs) in pearl oyster Pinctada fucata martensii. Transcriptome analysis revealed 1986–3427 responsive genes enriched in the major immune and cell cycle-related pathways at different times after PAMP stimulation, and the expression patterns of genes under these pathways are complex and diverse. Moreover, "lysosomes" were enriched 6 h after LPS and PGN stimulation, while "peroxisomes" were only enriched in poly(I:C) group. These results suggest different response strategies of pearl oyster to different PAMPs. Furthermore, we identified 261 pattern-recognition receptors (PRRs) including 4 retinoic acid-inducible gene I-like receptors, 38 NOD-like receptors, 83 Toll-like receptors, and 136 C-type lectins in the genome of P. f. martensii. The diverse expression patterns of these PRRs after different PAMP stimulation indicated that pearl oyster evolved complex and specific recognition systems due to tandem repeat and diverse domain combination, which may help pearl oyster cope with the different pathogens in the environment. The present study improved our understanding of the molecular response of pearl oyster to different PAMP stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.