Abstract

BackgroundTropical stenothermal fish exhibit special tolerance and response to cold stress. However current knowledge of the molecular mechanisms response to cold stress in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. The tiger barb Puntius tetrazona is a tropical stenothermal fish, with great popularity in aquarium trade and research.ResultsTo investigate the response mechanism of P. tetrazona to low temperature, fish were exposed to increasing levels of acute cold stress. Histopathological analysis showed that the brain, gill, liver and muscle tissues appeared serious damage after cold stress (13 °C). Brain, gill, liver and muscle tissues from control (CTRL) groups (27 °C) and COLD stress groups (13 °C) of eight-month fish (gender-neutral) were sampled and assessed for transcriptomic profiling by high-throughput sequencing. 83.0 Gb of raw data were generated, filtered and assembled for de novo transcriptome assembly. According to the transcriptome reference, we obtained 392,878 transcripts and 238,878 unigenes, of which 89.29% of the latter were annotated. There were 23,743 differently expressed genes (DEGs) been filtered from four pairs of tissues (brain, gill, liver and muscle) between these cold stress and control groups. These DEGs were mainly involved in circadian entrainment, circadian rhythm, biosynthesis of steroid and fatty acid. There were 64 shared DEGs between the four pairs of groups, and five were related to ubiquitylation/deubiquitylation. Our results suggested that ubiquitin-mediated protein degradation might be necessary for tropical stenothermal fish coping with acute cold stress. Also, the significant cold-induced expression of heat shock 70 kDa protein (HSP70) and cold-induced RNA-binding protein (CIRBP) was verified. These results suggested that the expression of the molecular chaperones HSP70 and CIRBP in P. tetrazona might play a critical role in coping with acute cold stress.ConclusionsThis is the first transcriptome analysis of P. tetrazona using RNA-Seq technology. Novel findings about tropical stenothermal fish under cold stress (such as HSP70 and CIRBP genes) are presented here. This study contributes new insights into the molecular mechanisms of tropical stenothermal species response to acute cold stress.

Highlights

  • Tropical stenothermal fish exhibit special tolerance and response to cold stress

  • The transcriptional profiling of cold adapting polar fishes implies that routine protein homeostasis is a significant cost in extreme cold and that the ubiquitin-mediated protein degradation pathway is of special importance during this adaptation process [2]

  • Ubiquitination-related genes are significantly expressed in temperate fish such as Cyprinus carpio [3,4,5], tropical fish such as Danio rerio [6, 7] and other fishes [8,9,10,11] when exposed to acute cold stress

Read more

Summary

Introduction

Tropical stenothermal fish exhibit special tolerance and response to cold stress. Current knowledge of the molecular mechanisms response to cold stress in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. A conservative responsive mechanism exists in different fish species under long-term low temperature and acute cold stress. Few tropical stenothermal fish species have been reported on with regards to the molecular mechanisms responding to temperature stress. Genes related to the regulation of peptidase activity, microtubule, cytoplasmic and cellular metabolic processes are involved in the responding to heat stress in barramundi muscle tissue [13]. More studies are needed on other species to reveal the response and molecular mechanisms of tropical stenothermal fish after temperature stress [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call