Abstract

Paralytic shellfish toxins (PSTs) are an increasingly important source of pollution. Bivalves, as the main transmission medium, accumulate and metabolize PSTs while protecting themselves from damage. At present, the resistance mechanism of bivalves to PSTs is unclear. In this study, Mytilus galloprovincialis and Argopecten irradians were used as experimental shellfish species for in situ monitoring. We compared the inflammatory-related gene responses of the two shellfish during PSTs exposure by using transcriptomes. The results showed that the accumulation and metabolism rate of PSTs in M. galloprovincialis was five-fold higher than that in A. irradians. The inflammatory balance mechanism of M. galloprovincialis involved the co-regulation of the MAPK-based and AMPK-based anti-inflammatory pathways. A. irradians bore a higher risk of death because it did not have the balance system, and the regulation of apoptosis-related pathways such as the PI3K-AKT signaling pathway were upregulated. Taken together, the regulation of the inflammatory balance coincides with the ability of bivalves to cope with PSTs. Inflammation is an important factor that affects the metabolic pattern of PSTs in bivalves. This study provides new evidence to support the studies on the resistance mechanism of bivalves to PSTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.