Abstract

BackgroundPanax ginseng C. A. Meyer is one of the most widely used medicinal plants. Complete genome information for this species remains unavailable due to its large genome size. At present, analysis of expressed sequence tags is still the most powerful tool for large-scale gene discovery. The global expressed sequence tags from P. ginseng tissues, especially those isolated from stems, leaves and flowers, are still limited, hindering in-depth study of P. ginseng.ResultsTwo 454 pyrosequencing runs generated a total of 2,423,076 reads from P. ginseng roots, stems, leaves and flowers. The high-quality reads from each of the tissues were independently assembled into separate and shared contigs. In the separately assembled database, 45,849, 6,172, 4,041 and 3,273 unigenes were only found in the roots, stems, leaves and flowers database, respectively. In the jointly assembled database, 178,145 unigenes were observed, including 86,609 contigs and 91,536 singletons. Among the 178,145 unigenes, 105,522 were identified for the first time, of which 65.6% were identified in the stem, leaf or flower cDNA libraries of P. ginseng. After annotation, we discovered 223 unigenes involved in ginsenoside backbone biosynthesis. Additionally, a total of 326 potential cytochrome P450 and 129 potential UDP-glycosyltransferase sequences were predicted based on the annotation results, some of which may encode enzymes responsible for ginsenoside backbone modification. A BLAST search of the obtained high-quality reads identified 14 potential microRNAs in P. ginseng, which were estimated to target 100 protein-coding genes, including transcription factors, transporters and DNA binding proteins, among others. In addition, a total of 13,044 simple sequence repeats were identified from the 178,145 unigenes.ConclusionsThis study provides global expressed sequence tags for P. ginseng, which will contribute significantly to further genome-wide research and analyses in this species. The novel unigenes identified here enlarge the available P. ginseng gene pool and will facilitate gene discovery. In addition, the identification of microRNAs and the prediction of targets from this study will provide information on gene transcriptional regulation in P. ginseng. Finally, the analysis of simple sequence repeats will provide genetic makers for molecular breeding and genetic applications in this species.

Highlights

  • Sequencing and de novo assembly To characterize the transcriptome of P. ginseng and generate expression profiles, we sequenced Complementary DNA (cDNA) samples from four P. ginseng tissues using a Roche/454 GS-FLX (Titanium) pyrosequencing machine

  • One half run was performed for each sample, yielding approximately 2.42 million raw reads, totaling ~1.01 billion base pairs

  • To acquire high-quality reads, we filtered out adapter sequences and reads that were shorter than 50 bp

Read more

Summary

Introduction

Many researchers have obtained genomic information for P. ginseng by employing expressed sequence tags (ESTs), which are considered an efficient tool for gene discovery, especially in plants lacking an assembled genome [4]. Previous studies have generated ESTs derived from P. ginseng roots, rhizomes, seeds and leaves using the Sanger method [5,6,7,8]. As this method has a high cost and is very time consuming, only 17,773 ESTs obtained using this technique have been deposited in NCBI to date. Given that different tissues exhibit specific gene expression patterns, it is necessary to obtain the global transcriptome of other tissues to obtain full genomic information for P. ginseng

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.