Abstract

Banded leaf and sheath blight (BLSB) is a devasting disease caused by the necrotrophic fungus Rhizoctonia solani that affects maize (Zea mays L.) fields worldwide, especially in China and Southeast Asia. Understanding how maize plants respond to R. solani infection is a key step towards controlling the spread of this fungal pathogen. In this study, we determined the transcriptome of maize plants infected by a low-virulence strain (LVS) and a high-virulence strain (HVS) of R. solani for 3 and 5 days by transcriptome deep-sequencing (RNA-seq). We identified 3,015 (for LVS infection) and 1,628 (for HVS infection) differentially expressed genes (DEGs). We confirmed the expression profiles of 10 randomly selected DEGs by quantitative reverse transcription PCR. We also performed a Gene Ontology (GO) enrichment analysis to establish which biological processes are associated with these DEGs, which revealed the enrichment of defense-related GO terms in LVS- and HVS-regulated genes. We selected 388 DEGs upregulated upon fungal infection as possible candidate genes. Among them, the overexpression of ZmNAC41 (encoding NAC transcription factor 41) or ZmBAK1 (encoding BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) in rice enhanced resistance to R. solani. In addition, overexpressing ZmBAK1 in rice also increased plant height, plant weight, thousand-grain weight, and grain length. The identification of 388 potential key maize genes related to resistance to R. solani provides significant insights into improving BLSB resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call