Abstract

To explore whether a probiotic complex composed of Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei can prevent or inhibit the inflammatory response caused by the invasion of Plesiomonas shigelloides in the southern catfish, we screened differentially expressed genes and enriched inflammation-related pathways among a control and three experimental groups and conducted analysis by transcriptome sequencing after a 21-day breeding experiment. Compared with those in the PS (Plesiomonas shigelloides) group, southern catfish in the L-PS (Lactobacillus-Plesiomonas shigelloides) group had no obvious haemorrhages or ulcerations. The results also showed that inflammation-related genes, such as mmp9, cxcr4, nfkbia, socs3, il-8, pigr, tlr5, and tnfr1, were significantly upregulated in the PS group compared with those in the L-PS groups. In addition, we verified six DEGs (mmp9, cxcr4, nfkbia, socs3, rbp2, and calr) and three proteins (CXCR4, NFKBIA, and CALR) by qRT-PCR and ELISA, respectively. Our results were consistent with the transcriptome data. Moreover, significantly downregulated genes (p < 0.05) were enriched in inflammation-related GO terms (lymphocyte chemotaxis and positive regulation of inflammatory response) and immune-related pathways (intestinal immune network for IgA production and IL-17 signalling pathway) in the L-PS vs. the PS group. Our results indicate that the infection of P. shigelloides can produce an inflammatory response, and probiotics could inhibit the inflammatory response caused by P. shigelloides to some extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call