Abstract

The ductus arteriosus (DA) immediately starts closing after birth. This dynamic process involves DA-specific properties, including highly differentiated smooth muscle, sparse elastic fibers, and intimal thickening (IT). Although several studies have demonstrated DA-specific gene expressions using animal tissues and human fetuses, the transcriptional profiles of the closing DA and the patent DA remain largely unknown. We performed transcriptome analysis using four human DA samples. The three closing DA samples exhibited typical DA morphology, but the patent DA exhibited aorta-like elastic lamellae and poorly formed IT. A cluster analysis revealed that samples were clearly divided into two major clusters, the closing DA and patent DA clusters, and showed distinct gene expression profiles in IT and the tunica media of the closing DA samples. Cardiac neural crest-related genes such as JAG1 were highly expressed in the tunica media and IT of the closing DA samples compared to the patent DA sample. Abundant protein expressions of jagged 1 and the differentiated smooth muscle marker calponin were observed in the closing DA samples but not in the patent DA sample. Second heart field-related genes such as ISL1 were enriched in the patent DA sample. These data indicate that the patent DA may have different cell lineages compared to the closing DA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.