Abstract

Biological strategy of utilization of plants-microbe's interactions to remediate cadmium (Cd) contaminated soils is effective and practical. However, limited evidence at transcriptome level is available about how microbes work with host plants to alleviate Cd stress. In the present study, comparative transcriptomic analysis was performed between maize seedlings inoculated with arbuscular mycorrhizal (AM) fungi and non-AM fungi inoculation under distinct concentrations of CdCl2 (0, 25, and 50 mg per kg soil). Significantly higher levels of Cd were found in root tissues of maize colonized by AM fungi, whereas, Cd content was reduced as much as 50% in leaf tissues when compared to non-AM seedlings, indicating that symbiosis between AM fungi and maize seedlings can significantly block translocation of Cd from roots to leaf tissues. Moreover, a total of 5827 differentially expressed genes (DEG) were determined and approximately 68.54% DEGs were downregulated when roots were exposed to high Cd stress. In contrast, 67.16% (595) DEGs were significantly up-regulated when seedlings were colonized by AM fungi under 0 mg CdCl2. Based on hierarchical clustering analysis, global expression profiles were split into eight distinct clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that hundreds of genes functioning in plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway and glutathione metabolism were enriched. Furthermore, MapMan pathway analysis indicated a more comprehensive overview response, including hormone metabolism, especially in JA, glutathione metabolism, transcription factors and secondary metabolites, to Cd stress in mycorrhizal maize seedlings. These results provide an overview, at the transcriptome level, of how inoculation of maize seedlings by AM fungi could facilitate the relief of Cd stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.