Abstract
BackgroundPlants engineered for abiotic stress tolerance may soon be commercialized. The engineering of these plants typically involves the manipulation of complex multigene networks and may therefore have a greater potential to introduce pleiotropic effects than the simple monogenic traits that currently dominate the plant biotechnology market. While research on unintended effects in transgenic plant systems has been instrumental in demonstrating the substantial equivalence of many transgenic plant systems, it is essential that such analyses be extended to transgenic plants engineered for stress tolerance. Drought-tolerant Arabidopsis thaliana were engineered through overexpression of the transcription factor ABF3 in order to investigate unintended pleiotropic effects. In order to eliminate position effects, the Cre/lox recombination system was used to create control plant lines that contain identical T-DNA insertion sites but with the ABF3 transgene excised. This additionally allowed us to determine if Cre recombinase can cause unintended effects that impact the transcriptome.ResultsMicroarray analysis of control plant lines that underwent Cre-mediated excision of the ABF3 transgene revealed only two genes that were differentially expressed in more than one plant line, suggesting that the impact of Cre recombinase on the transcriptome was minimal. In the absence of drought stress, overexpression of ABF3 had no effect on the transcriptome, but following drought stress, differences were observed in the gene expression patterns of plants overexpressing ABF3 relative to control plants. Examination of the functional distribution of the differentially expressed genes revealed strong similarity indicating that unintended pathways were not activated.ConclusionsThe action of ABF3 is tightly controlled in Arabidopsis. In the absence of drought stress, ectopic activation of drought response pathways does not occur. In response to drought stress, overexpression of ABF3 results in a reprogramming of the drought response, which is characterized by changes in the timing or strength of expression of some drought response genes, without activating any unexpected gene networks. These results illustrate that important gene networks are highly regulated in Arabidopsis and that engineering stress tolerance may not necessarily cause extensive changes to the transcriptome.
Highlights
Plants engineered for abiotic stress tolerance may soon be commercialized
This construct was transformed into Arabidopsis thaliana to generate 35S:ABA-responsive elements-binding factor 3 (ABF3) plants
The Impact of Cre recombinase on the transcriptome is minimal In order to eliminate position effects and focus on unintended pleiotropic effects of transcription factor overexpression, the Cre/lox recombination system was employed to create a series of control plant lines that contain the selectable marker at the site of transgene insertion but from which the ABF3 transgene was excised
Summary
Plants engineered for abiotic stress tolerance may soon be commercialized The engineering of these plants typically involves the manipulation of complex multigene networks and may have a greater potential to introduce pleiotropic effects than the simple monogenic traits that currently dominate the plant biotechnology market. Drought-tolerant Arabidopsis thaliana were engineered through overexpression of the transcription factor ABF3 in order to investigate unintended pleiotropic effects. In order to eliminate position effects, the Cre/lox recombination system was used to create control plant lines that contain identical T-DNA insertion sites but with the ABF3 transgene excised. This allowed us to determine if Cre recombinase can cause unintended effects that impact the transcriptome. The increased complexity of these traits may correspond with a greater potential for unintended effects to occur in transgenic plants
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.