Abstract

Candida glabrata, an opportunistic fungal pathogen, causes superficial and life-threatening infections in humans. In the host microenvironment, C. glabrata encounters a variety of stresses, and its ability to cope with these stresses is crucial for its pathogenesis. To gain insights into how C. glabrata adapts to adverse environmental conditions, we examined its transcriptional landscape under heat, osmotic, cell wall, oxidative, and genotoxic stresses using RNA sequencing and reveal that C. glabrata displays a diverse transcriptional response involving ∼75% of its genome for adaptation to different environmental stresses. C. glabrata mounts a central common adaptation response wherein ∼25% of all genes (n = 1370) are regulated in a similar fashion at different environmental stresses. Elevated cellular translation and diminished mitochondrial activity-associated transcriptional signature characterize the common adaptation response. Transcriptional regulatory association networks of common adaptation response genes revealed a set of 29 transcription factors acting as potential activators and repressors of associated adaptive response genes. Overall, the current work delineates the adaptive responses of C. glabrata to diverse environmental stresses and reports the existence of a common adaptive transcriptional response upon prolonged exposure to environmental stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call