Abstract

The color of berry skin is an important economic trait of grape, which is determined by the composition and concentration of anthocyanins. The anthocyanin accumulation of grape berry skin is affected by light. In order to further explore the mechanisms of light regulation on anthocyanin accumulation in grape, we detected anthocyanin by UPLC-MS and performed transcriptomic analysis using red grape Vitis vinifera cv. ‘Red Globe’ as material. In our study, 6 kinds of anthocyanins were detected in the berry skin of ‘Red Globe’. The high expression of F3′H genes and the low expression of F3′5′H genes led to the accumulation of dihydroxylated anthocyanins which account for 95% of total anthocyanins. After cluster bagging, the expression of key genes which were related to anthocyanin accumulation was down-regulated, and the concentration of total anthocyanins significantly decreased in ‘Red Globe’. However, the anthocyanin composition was not changed. A series of candidate genes which were annotated as HY5, UVR8, PHY, CRY and COL may play important roles in the response and transmission of light signals in grape. And multiple transcription factors genes (1 MYB, 3 bHLH, 2 NAC and 1 ERF) were selected which may be involved in the regulation of light-induced anthocyanin accumulation in grape. The results demonstrated that ‘Red Globe’ is a typical light-depended grape variety whose anthocyanin synthesis in the berry skin is induced by light. Light-induced anthocyanin synthesis is a complex process involving multiple genes. This investigation provided useful insights into further studies on light-induced anthocyanin accumulation in grape berry skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call